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Abstract

An approach for solving the compressible Euler and Navier-Stokes equations upon meshes composed of nearly arbitrary
polyhedra is described. Each polyhedron is constructed from an arbitrary number of triangular and quadrilateral face
elements, allowing the unified treatment of tetrahedral, prismatic, pyramidal and hexahedral cells, as well the general cut
cells produced by Cartesian mesh approaches. The basics behind the numerical approach and the resulting data struc-
tures are described. The accuracy of the mixed volume grid approach is assessed by performing a grid refinement study
upon a series of hexahedral, tetrahedral, prismatic and Cartesian meshes for an analytic inviscid problem. A series of
laminar validation cases are made, comparing the results upon differing grid topologies to each other, to theory and
experimental data. A computation upon a prismatic/tetrahedral mesh is made simulating the laminar flow over a wall/cyl-

inder combination.

IIntroduction

Unstructured grids are rapidly becoming more useful for
the simulation of inviscid flows in complex geometries.
The promise of easing the burden of grid generation for
complex geometries is being met. By exploiting certain
geometric properties of tetrahedra and convex unit aspect
ratio hexahedra (Cartesian cells), efficient methods can be
found that fill the volume of the domain, with some user
intervention still needed to provide guidance upon cell
size and possibly stretching directions. Although the vol-
ume grid generation can be relatively automated, the sur-
face discretization of complex geometries is still a non-
trivial task. There are presently two separate camps of
unstructured volume grid generation: tetrahedral and Car-
tesian based. Tetrahedral based mesh generation
approaches currently being investigated can be grouped
into advancing-front [1], advancing-layer {2], and point
insertion [3] methods. Cartesian mesh generation is a rel-
atively newer approach, which uses a recursive subdivi-
sion of convex, unit-aspect ratio Cartesian cells, and
creates (possibly) non-convex polyhedra near boundaries
[4,5,6).

The use of tetrahedral elements can provide efficient cell-
centered and vertex-based schemes. For a cell-centered
approach, where the conservation volumes are the tetra-
hedra themselves, the fixed number of faces and vertices
of the control volume results in a simpler flow solver. For
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vertex-based schemes, where the control volume is the
dual mesh, elegant formulations can result using a conser-
vative, finite-element framework. By using linear finite-
elements and exploiting certain geometric properties of
the tetrahedra, efficient edge-based schemes can be formu-
lated. The use of tetrahedral grids does, though, have its
drawbacks. One stems from requiring that the surface dis-
cretization match faces in the volume grid exactly, which
makes the surface discretization a controlling part of the
quality of the volume grid generation. In addition, the vol-
ume grids generated are irregular in the sense that the ori-
entation of the faces of the volumes do not typically
follow a preferred direction.

Cartesian based approaches attempt to overcome these
two problems by filling the volume with regularly ori-
ented, nearly isotropic cells, that become general polyhe-
dra near the boundaries, where these boundary cells have
been cut from the Cartesian/boundary intersections. This
has essentially sacrificed grid smoothness at the boundary
for grid smoothness over the larger portion of the volume.
Other benefits of the Cartesian approach can be traced to
taking advantage of the geometric regularity of the un-cut
cells, and other implementation specific benefits resulting
from the hierarchy of the grid from the grid generation
process. The lack of grid smoothness along the boundaries
can cause problems for both inviscid and viscous calcula-
tions, and the resulting solvers are slightly more compli-
cated than those based upon tetrahedral cells. These
drawbacks aside, the Cartesian approach is proving to be a
very successful method for computing inviscid flows
about complex geometries.



Both tetrahedral and Cartesian strategies are lacking
when computing viscous flows. The current viscous flux
formulations dictate that smoothly stretched, nearly
orthogonal grids are needed to provide robust and accu-
rate predictions of viscous flows. The requirement of
grid smoothness rises to extreme importance, since non-
smoothness has a direct effect upon needed derivative
quantities at walls, such as skin friction and heat trans-
fer, which are typically the quantities desired from such
an analysis. Grid smoothness also has a direct effect
upon convergence behavior, since the typical flux func-
tions in use today will produce non-positive stencils if
certain geometric qualities of the mesh are not met [3,4].
To predict skin friction and heat transfer properly in tur-
bulent flows, high resolution is needed normal to the
wall dictating large numbers of cells. In addition, from
an efficiency standpoint, grid stretching is typically
needed in only a single direction, normal to the stream
surface, and is not needed along it. By construction,
Cartesian based methods do not allow for anisotropy of
the mesh, while the efficiency of using highly stretched
tetrahedral cells is suspect.

A means that is proposed to alleviate these deficiencies
is currently being called a prismatic grid approach. In
this case, bounding surfaces are triangulated, and this
bounding triangulation is extruded away from the sur-
face, creating layers of cells that are smoothly stretched
in a surface normal direction. Within the layers, the
desired smoothness and near-orthogonality is retained.
These prismatic cells are typically grown out a distance
from the surface, then a volume mesh generation strat-
egy is used to fill the void. Examples of this approach
are shown by Melton et al. {7] for the Euler equations,
where a Cartesian grid was used to fill the void, and a
hyperbolic-like approach was used to generate the pris-
matic layers. Karman [6] used a similar Cartesian/pris-
matic approach for the Euler and Navier-Stokes
equations, where a more algebraic approach was used
for the prisms. Connell et al. [8,9] used a surface discret-
ization coupled with a CAD-based surface description,
from which an algebraic approach extruded the prisms,
and an advancing front mesh generator filled the void
with tetrahedra. Kallinderis et al. [10] used a similar
approach, but did not create the surface description from
a CAD basis. By exploiting the semi-structured nature
of the prismatic portions of the grid, Parthasarathy et al.
[11] have proposed an efficient strategy to solve the
Euler and Navier-Stokes equations. Some obvious
drawbacks of the prismatic approach, in general, still
require some work to resolve. For instance, the bound-
ary surface discretization will control the smoothness of
the grid near the wall, and care must be taken to ensure
smoothness at the prism/volume grid interface. Regard-
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less, current examples of this approach show tremen-
dous potential, where it is hoped to alleviate many of the
problems unstructured grid approaches encounter for
computing high Reynolds number, turbulent flows.

A common thread to computing flows upon these
classes of grids is that the flow solver must handle both
tetrahedral, pentahedral (prismatic and pyramid) and
hexahedral cells. Additional capability to handle adap-
tive mesh refinement, “hanging nodes”, Cartesian gen-
erated grids with their cut cells, the extrusion of
quadrilateral cells into hexahedra, or, perhaps, extrusion
of other surface polygons would also be desired. In gen-
eral, this type of solver must be able to solve the conser-
vation laws upon general, non-simplicial conservation
volumes.

The use of edge-based data structures have been pro-
posed to solve the Euler/Navier-Stokes equations on
mixed-element meshes by Mavriplis et al. [12]. In this
case, a convincing argument is made for the use of
mixed-element meshes, and computations using differ-
ing element types for the same meshes are performed,
rather impressively. In [12] the edge-based formulation
is also used for the discretization of the viscous terms,
which analysis shows to be inaccurate on non-simplicial
meshes. An argument is made that relates this discreti-
zation to a thin-layer like formulation, so for certain
flows, the results might be adequate, but in general, a
different formulation for the viscous terms might be
desirable. This will undoubtedly not be solely edge-
based, but a careful implementation should not detract
too much from the approach.

The approach presented here solves the Euler and
Navier-Stokes equations using a cell-centered, finite-
volume scheme upon control volumes of nearly arbi-
trary polyhedra constructed from triangular and quadri-
lateral faces. The four basic cell types of tetrabedra,
prisms, pyramids and hexahedra are a subset of this,
plus the approach can compute flows upon Cartesian
generated grids, and grids where cell refinement has
introduced “hanging nodes”. It is certain that by restrict-
ing the mesh to be comprised of simpler polyhedra, a
simpler flow solver results. The approach here is based
upon the premise that by placing less restriction upon
the topology of the mesh, an overall faster turnaround
time will result. The additional computational complexi-
ties associated with this approach are tractable with well
thought out data structures and algorithms. One noted
difference from this approach and standard cell-centered
methods is that both cell-averaged data and data at the
vertices of the control volumes are used.

The outline of this paper is as follows. The basic data
structures used for the approach are explained, then the
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approaches used to solve the conservation laws are
shown. The issues regarding vectorization are
addressed, namely the coloring of the different opera-
tions upon the basic data types. The accuracy of the
approach is assessed using an analytic solution to the
Euler equations for the four basic cell types mentioned
above, and Cartesian generated grids. The laminar flow
over a selection of problems are then made, and compar-
ison is made to theory (flat plate) and experiment
(developing duct flow). To demonstrate the capability of
computing upon prismatic/tetrahedral meshes the
approach is used to compute the laminar flow about a
right circular cylinder upon a flat plate using a grid gen-
erated by Connell et al. {8].

II Data and Data Structures

The compressible Euler and Navier-Stokes equations
are solved in three-dimensions in a cell-centered, finite-
volume format upon a mesh of polyhedra where each
polyhedron is created from an arbitrary number of trian-
gular and quadrilateral face elements. This particular
finite-volume approach uses data at both cell centers and
mesh vertices, which implicitly uses all nearest neighbor
cell data, without having to store its connectivity. Since
the governing equations are being solved in conserva-
tion law form using a cell-centered scheme, the data
structures used in the code are designed for such an
approach. Three separate data entities are identified that
make up the mesh and are needed to perform the calcu-
lations: vertices, faces, and cells. These form a hierar-
chical-like relationship with each other, since faces are
constructed from vertices and cells are constructed from
faces. Edges can be obtained from faces/cells, but since
they are not used directly in this cell-centered scheme, a
separate data entity for them is not maintained. The sep-
arate operations needed in the solution of the conserva-
tion laws are cast as operations upon these data types. A
collection of vertices/faces/cells which make up a por-
tion (either complete or by some geometric decomposi-
tion) of the entire domain are further grouped together
into data entities called grids. Due to the hierarchy of the
data entities, much information can be obtained directly,
such as cell-face-cell connectivity. To clarify these data
entities, the following briefly describes each entity, the
data it contains, and how it is stored and maintained.

Il.a Grids

Grids are composed of lists of cells/faces/vertices upon
which the computations are performed, as well as lists
of boundary faces and boundary vertices. All loop color-
ing information is also stored here. It is intended to
eventually perform multigrid acceleration, where each
grid in the sequence will be constructed via an agglom-
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eration approach. This approach lends well to a hierar-
chy of grids, corresponding to the agglomeration of the
parent grid and the construction of further grids in the
sequence via solution adaptive mesh refinement. This
will be represented hierarchically in the grid data struc-
ture also, so that each grid will have pointers to its par-
ent and children. Although multigrid acceleration is not
employed at this stage of the solver development, the
use of the grid data entity should aid in its implementa-
tion. The grid data type might also be useful for parallel
computations, by holding the spatially decomposed
data.

IL 11

Cells define the conservation volumes upon which the
conservation laws are solved and provide a place to
store cell-averaged data, flux balances and other cell-
based quantities. Each cell is comprised of an arbitrary
number of faces, where a list of pointers for each face is
maintained in the cell. Cells are accessed by a list of
pointers to the cell data structures. For vectorization of
cell-to-vertex scatter operations, cells are grouped into
like vertex number groups and colored (see Section IV).

ILc Faces

Fluxes are integrated across faces, and the result of the
integrations are scattered to the cells which are logically
left and right of the face where the logical orientation is
determined by the face normal vector. Faces contain
pointers to the cells that are logically left and right of the
faces. Each face contains a list of pointers to globally
unique vertices defining the geometry of the face. For
practicality, the faces must be either triangular or quad-
rilateral. The needed geometric data for the flux integra-
tion (Gauss points, area vector) are stored in the face
data structure, but may also be computed from the face
vertex data. Cell faces are constructed from the posi-
tively (outward pointing normal) ordered vertex lists of
the input cell definition. To create a global list of unique
faces, an octree-based, fixed bucket size searching pro-
cedure is used to match already created faces. Faces are
sorted according to Gauss point location in space, and
are matched by their ordered vertex lists. The tree auto-
matically sizes itself during the creation phase, and
prunes itself to zero length when it is not needed. For a
multi-block grid or a grid with different grid types in
each domain, there is no need to supply inter-block or
inter-grid connectivity data, since this face matching
procedure will automatically ensure the proper face
matching across inter-block or cell-refinement bound-
aries. Interior and boundary faces are maintained and
processed in separate lists. The face data is not only
used for flux evaluation, but are also used in the upwind,

American Institute of Aeronautics and Astronautics



inviscid reconstruction procedure explained in Section
TILb. For vectorization purposes, the face loops are also
colored (Section IV). For boundary condition applica-
tion, ghost cells are created for all boundary faces, and
the data used in the cell-to-vertex scatters. Boundary
condition faces of the same boundary condition type are
grouped together, and these are also colored.

I1.d Vertices

The vertex data structures hold the spatial coordinates of
the vertices of the mesh, and provides a list of pointers
to cells which have edges of faces that are subtended by
the vertex. This provides a means of obtaining the solu-
tion at the vertices from the cell-centered data, which is
needed to compute the upwind, inviscid reconstruction,
to form the viscous fluxes, and to plot the solution. Ver-
tex data is obtained in a nominally linearity-preserving
manner, as shown in Section IILa. As in the face data,
upon input, a self-expanding, bucket searching octree
procedure is used to provide unique vertex data, where
sorting and matching is made according to the spatial
location of the vertex. This makes multi-block and
multi-grid type data definition easier, since the burden
of vertex matching is taken by the octree, and not the
grid generation.

I1.e Input Data Types

The flexibility of the conservation volume construction
is evident by the various standard grid data types that
can be read in by the code. The solver is presently con-
figured to read in 5 types of grid data: PLOT3D data
[13], VGRID data (see [2] and others), an input format
corresponding to the prismatic/tetrahedral grid genera-
tion system described in [8,9,14], and a format corre-
sponding to the tetrahedral generator of the FELISA
system([15]. Another grid type is also available, termed
here as the MVG (Mixed Volume Grid) type, which
defines each cell as being constructed of an arbitrary
number of triangular and quadrilateral faces. Cartesian
generated grids are input as the MVG data type, since
the cut cells generated by the Cartesian grid generator
produces polyhedra that are not of the four types listed
above. All of the 5 specific data types can be translated
into the MVG format.

III Solution of the Conservation Laws

A A O e e e e e e R ———

The Euler and Navier-Stokes equations cast in conserva-
tion law form are solved in a cell-centered, finite-vol-
ume format upon the polyhedral control volumes. Both
upwind and central-difference approximations of the
convective fluxes are used, and a directed gradients pro-
cedure is used for the viscous fluxes. A simple three-
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stage explicit scheme with a spatially varying time step,
based upon both hyperbolic and parabolic time step con-
straints, is used to update the solution. Contrary to most
cell-centered approaches, the solution procedure here
relies upon both vertex and cell-averaged data. The use
of both vertex and cell-averaged data is also used in the
USM3D series of unstructured mesh solvers developed
by Frink [16], and has inspired some of the generaliza-
tions to mixed-volume grids, shown here.

III.2 Vertex Data Interpolation

The data at the vertices of the mesh is obtained from the
cell-averaged data by a linearity-preserving interpola-
tion procedure. This interpolation procedure is similar to
that presented by Holmes and Connell in [17], where it
is termed a linearity-preserving Laplacian weighting. By
considering an interpolation formula that interpolates
the solution at the j-th vertex from the n cells surround-
ing it as

i = o, M

n

where the &_ are found from the weights of a pseudo-
Laplacian operator,

LO) = X0, (=) @

B == €))

Linearity preservation is guaranteed by requiring (2)
satisfy

L(x) =L(y) =L(z) =0. C))

By expanding the weights about unity in terms of linear
basis functions, as

o, = 1+7‘x(in_xj) +A’y (yn_yj) +2, (Zn—zj) 5)

a 3x3 linear system is found for the ;"i which is inverted
beforehand. This process is purely geometric, and there-
fore is precomputed for a given mesh, and only requires
a simple cell-to-vertex scattering procedure. By provid-
ing higher-order constraints in (4) and expanding with
higher-order basis functions in (5), quadratic-preserving
reconstructions can also be found [4] but are not used
here, since only linearity-preserving cell- and face-
based reconstructions are used. In practice, the weights
(5) are restricted 0 < o, < 2.
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IILb Upwind Flux Construction

The upwind scheme follows standard practice used for
unstructured grids: A reconstruction procedure is used
to reconstruct the solution locally within each cell,
which is then followed by an upwind flux construction
at the cell faces. The reconstruction within each cell is
used to provide states to an approximate Riemann
solver, which is used to compute the fluxes. The fluxes
are then scattered to the logical left and right cells of the
face.

IIIb.1 Reconstruction

The reconstruction of the solution within each conserva-
tion volume is found by performing a surface integral
over the conservation volume itself. Since the data at the
vertices of the conservation volume are found in a lin-
earity preserving manner, a second-order, Gaussian
quadrature guarantees that the reconstructed solution is
also linearity preserving. For a general control volume,
consider finding the gradient in the reconstruction

©)

u = 1‘1+aa—;- (xi—J'ci)

by applying a divergence integral over the volume

ou .., _ o . @)
Ja—xidv = §uNid(aV)
\ 4 ov

By replacing the surface integral in (7) with a numerical
quadrature, the gradient can be found by a face based
scatter operation. The surface integral is replaced by a
single point quadrature so that the gradient is found to
be

= %/ 2 u6N; ®)

du
ax'. faces

where N, is the i-th Cartesian component of the out-
ward facing (non-unit) normal, and u G is found by
evaluating a linear or bi-linear expansion in the face at
.the face Gauss point for three- and four-vertexed faces,
respectively. The cell volumes and centroids are found
beforehand by using a third-order Gaussian quadrature
of another application of the divergence integral. For the
general flux G;, application of the divergence theorem
replaces the volume quadrature with a surface integral.
That is

—dV =

= ®)

§Giﬁid(aV)
1
\'4 av

5

To obtain the cell volume and centroid locations the flux
on the right hand side of (9) is taken to be

[ (x,0,0) for V |
x2
G=[\7 0,0 for xV| (10)
(xy,0,0) for yV
| (x2,0,0) for zV |

The reconstruction (8) preserves linear data, and for a
general mesh implicitly includes all local cell data in the
construction of the gradient through the vertex data
interpolation. Since the faces are colored for vectoriza-
tion of the integration of the inviscid and viscous fluxes,
this procedure follows closely the overall face-based
solution method.

It is instructive to note that when applied to a mesh of
tetrahedra, this procedure results in the same formula
found by Frink [16], also pointed out by Mitchell [18].

I1Ib.2 Upwind Flux Construction

Three popular upwind flux functions are available:
Roe’s FDS [19], Van Leer’s FVS [20] and Liou’s
AUSM+ [21]. The reconstruction provides the left and
right input states at the faces, which then use the approx-
imate Riemann solvers noted above to compute the flux.
The upwind fluxes are then scattered to the cells.

IIL.c Central Differencing with Explicit,
Scalar Dissipation

A conservative formulation corresponding to centrally
differenced fluxes with blended second- and fourth-

order dissipation is also available in the solver. Follow-
ing [22], at a given face, the flux is formulated as

(11)

where the dissipative flux, d, is constructed from a
blending of a first-difference and pseudo third-differ-
ence. When integrated over the faces of the control vol-
ume, this yields a blended Laplacian and Biharmonic
operator which is used to dissipate spurious oscillations.
This scalar dissipative flux is formulated as

1
F = i(FL+FR)-d

d= dl_d3
dy = 5e (We-W)) (12)

d

3 = 6e(4) [D, (W) - D, (Wp)]

The pseudo-second differences formed for each cell,
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D, , represent undivided approximations to Laplacians
using only differences about faces. That is, for an arbi-
trary function, f
Dz(f) = z (fR—fL) (13)
faces
where the R and L refer to the logically oriented cells
sharing the face.

The coefficients € @ and € “) are used to scale the
first and pseudo-third differences with the cell size, and
to turn off the fourth-order dissipation across shocks.
The coefficient of the first-difference in (12) is com-
puted as a normalized second-difference of pressure,
acting as a shock sensor

D, (P) (14)
y = —
2 (Pp+Pp)
faces
This gives the coefficients
(2)
€ = K,max (V,, V)
2 R L (15)

@ [ (5]

Standard values of the dissipation coefficients are used
as X, = 1/2 and x, = 1/32 . The factor G scales
the dissipation according to the maximum eigenvalue of
the flux jacobian as

(cL+0'R)

2 (16)
S; /R = (Iunx+vny+wnz|+a) IL/R

G =

On a uniform mesh, this dissipation results in a blended
Laplacian/biharmonic operator.

I11.d Treatment of Viscous Fluxes

The viscous fluxes are computed following a directed
gradients procedure suggested by Mitchell {23]. This
procedure is linearly K-exact, and produces the same
gradient computed using a divergence-based reconstruc-
tion that preserves linear data, as in [24] and {4], com-
monly called a diamond-path reconstruction. The idea is
based upon taking the inner product of the gradient with
three vectors joining locations where the data has been
obtained in an at least linearity-preserving manner. That
is, for the three vectors O r 52, 53

6

Au, = (Vu) -81
Au, = (Vu) -5, an
Auy = (Vu) -83

This results in a 3x3 linear system for the unknown gra-
dient, as

Ax, Ay, Az jlu Au

X 1
Ax, Ay, Az, u | = Au, (18)
Ax3 Ay Az3 u, Au3

The choice of the base vectors, 8, is taken so that 8,
joins the two centroids of the cells that share the face,
and the two others lie in the plane of the face. When a
linearly-exact procedure is used to produce the data at
the vertices, this procedure preserves linear gradients.
The viscous flux construction, evaluation and scattering
to the cell residuals is done on a face basis, which for
vectorization, depends upon loop coloring, as is
explained in the next section.

IV Loop Coloring for Vectorization

Vectorization of the solver is pursued for the use of
CRAY class vector machines. If the solver is used upon
non-vector machines, such as workstations, or is made
parallel, the basic structure and loop indexing used for
parallelization will result in a negligible penalty. The
preprocessing time for the loop colorings is marginal.

There are primarily two different types of scatter opera-
tions that must use loop coloring to obtain vectorization.
Loops over faces scattering to cells are performed for
the inviscid reconstruction, time-step computation and
for the viscous and inviscid flux integrals. Loops over
cells, scattering to vertices are performed to interpolate
the data at the vertices from the cells. All loops which
are to be vectorized are done so by compiler directives
to ignore vector dependencies. The vectorized code
ports to non-vector machines with no changes.

The face loop coloring is performed in a heuristic fash-
ion as indicated by the following pseudo-code.

N_colors=0
/* loop over all faces */
for(all faces)
added_color=false
/* loop over all available colors */
for(all colors && !added_color)
I_clrd=is left_colored_color(color)
R_clrd=is_right_colored_color(color)
/* 1f left and right cell are not color
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color them color */
if(!L clrd && !R_clrd)
face_color=color
added_color=true
endif
endfor
/* if not colored, color it color */
if(!added_color)
face_colorsN_colors
N _colors+=1l
endif
endfor

This results in roughly even-length loops of faces,
except for the last one or two colors, which typically
have a smaller numbers of faces. The balance of the col-
ors is dependent upon the order that the above algorithm
visits the faces, but using the input ordering appears to
be sufficient.

Vectorization of the cell-to-vertex scattering operation is
complicated by the fact that the cells in the mesh may
have a variable number of vertices. This is overcome by
grouping cells into groups of like vertex number, termed
here as verticity. Within cells of the same verticity, cells
are colored to avoid scattering to the same vertex in the
same loop. A binary-encoded coloring history of each
vertex is used to group the cells into colors. The follow-
ing pseudo-code illustrates the approach.

/* zero history for all vertices */
for(all vertices)

higt=0
endfor

/* loop over like-verticity cells */
ncolors=0
for(all cells)
/* comstruct a single history for this
cells’ vertices uging bitwise or */
v_C=0
for(all vertices in cell)
v.c=v_C | hist
endfor
£ _a_c=first_avail color(v_C)

num=1

for(all colors < f_a _c)
num*es2

endfor

for(all vertices in cell)
histehist | num

endfor

endfor

The routine first_avail color performs bitwise shifts
upon the cell-encoded vertex history and finds the first
available color for the vertices in the cell.

int first_aval_color(vC_hist)

7

pos =1 << 0
color=0
while( (vC_hist & pos) I= 0)
pos=pos << 1
color++
endwhile
return color

This colors the loops within a verticity-group of roughly
even length loops, with the last one or two loops of

smaller length. Representative performance values of
the vectorized code are given in the following sections.

V Validation and Demonstration

The accuracy of the solution procedure is first assessed
by performing a grid refinement study upon a sequence
of related meshes of hexahedra, prisms, tetrahedra and
those produced by a Cartesian grid generator. A devel-
oping laminar boundary layer and a developing laminar
duct flow are shown. Also shown is the laminar flow
computed about a flat plate/cylinder intersection, upon a
prismatic/tetrahedral grid generated by Connell 8].

V.a_Grid Refinement Study: Supersenic
Yortex

An analytical solution to the Euler equations is used to
assess the accuracy of the convective flux discretization
schemes of the solver. This flow field has been used by
Aftosmis et al. [25] to investigate the effects of gradient
limiting and by Luo, et al. {26] to assess an improved
reconstruction scheme for triangular meshes. The solu-
tion is a relatively simple function, and also lends itself
well to a grid refinement study, since although the flow
is simple, there are considerable gradients in pressure
and density across the domain. By assuming an isen-
tropic flow described by a line vortex situated at the ori-
gin, paraliel to the z-axis, the solution is

- (Y_I)MZ l__l_
i gl

2
T\ (-1
7)

(19)

( 1)7/(7— 1)
Ucos9
= UsinB
w=20

<
1

where the i-subscript refers to conditions along a refer-
ence (inner) radius r;, § = r/r, the polar angle in the
z=constant plane is © = atan (y/x) , and the flow
speed non-dimensionalized by the inner radius speed is
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U=1/f . The domain is taken to be for
Ee [1,1384], z€ [0,1] and 6€ [0,%/2], and
the Mach number along the inner radius is taken to be

M‘. = 2.25. This is a two-dimensional problem, so dur-
ing the refinement sequence, the discretization of the
grid in the z-direction is kept the same for all of the
grids. Figure 1 shows Mach number contours for this
flow.

Figure 1. Mach contours, compressible
vortex flow.

A sequence of related grids are generated based upon a
sequence of structured hexabedral grids with 5x5x5,
10x10x5, 20x20x5 and 40x40x5 cells. Tetrahedral grids
are created from the hexahedral meshes by creating six
tetrahedra from each hexahedra. Three families of pris-
matic grids are generated from the base hexahedral
meshes by creating prisms from the hexahedra whose
orientation of the normal vector of the triangular faces
in the prisms lie along the three different computation
coordinate axes. A sequence of Cartesian grids are also
generated, which are also used to assess the accuracy,
but are not directly related to the five grid sequences
above. Figure 2 shows the relationships between the
hex-related meshes, while Figure 3 shows the intersec-
tion of a z=constant plane through a representative Car-
tesian mesh. Note that for plotting purposes, cut-
Cartesian cells that cannot be represented as either hexa-
hedra, pyramids, prisms or tetrahedra are split into a col-
lection of tetrahedra and pyramids. For these cut cells, a
fictitious point located at the cell centroid is introduced,
which is used to create, corresponding to each triangular
or quadrilateral face of the cell, a tetrahedron or a pyra-
mid, respectively. This procedure is only needed for
plotting purposes, and is not used in the flow solver.

8

&

Tetrahedra Prisms, p_id=1
Prisms, p_id=2 Prisms, p_id=3
(Base) Hexahedron

Figure 2. The five, hexahedra-derived grids
types used in the mesh convergence study.

Figure 3. z=constant cut through a
Cartesian mesh

A plot of the L, norm of the density error

e, |p Porac agamst a representative two-
dimensional length scale found on each mesh is shown
in Figure 4. This length scale is introduced merely for
the estimation of the truncation error order, and is not
representative of a computational cost or efficiency
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norm. The intent of this study is only to gauge the accu-
racy and correctness of the inviscid flux constructions
and is not an attempt to assess whether one mesh topol-
ogy is superior to another. That assessment would
require a careful comparison of cost as well. This repre-
sentative length scale is calculated as

/V
l = ave
2d Az

Vn
vV = nCells
ave nCells

All calculations were performed using the upwind for-
mulation IILb, with the FDS scheme without gradient
limiting.

(20)

10°
@—© Hexahedra
-0 Prisms: p_id=1
O---O Prisms: p_id=2
1 A ——A Prisms: p_id=3
10t |<--<ITetrahedra
V—Y¥ Cartesian
L 10% | A8/
1 /'I
4d
10° &
10° e —
10* 10° 110"' 10" 10°
2D

Figure 4. L, -norms for upwind scheme

The orders of the discrete truncation error, found by
computing the slope on a logarithmic plot of the final
two meshes in each sequence, for the six different mesh
sequences, are shown in Table I, in the Appendix. All
schemes were globally second-order accurate, while the
tetrahedral and plane_id=1 meshes had a first-order
max-norm.

When viewing Figure 4, it is important to keep in mind
that the hexahedral, tetrahedral and prismatic meshes

9

are all interrelated, since they are derived from the same
mesh, while the Cartesian is not. All meshes are made
with a constant spacing in the z-direction, resulting in a
stack of four cells in the z-direction. The Cartesian mesh
and the hexahedral mesh are shown to have nearly the
same truncation error for the same length scale, which is
attributable to the similarity in the reconstruction/flux
construction schemes that they use. In {27] an analytic
solution of the Euler equations, Ringleb’s flow, was
used to compare the error computed by the Cartesian
approach and a structured mesh approach. There, a
structured mesh, which used an upwind coordinate-by-
coordinate reconstruction, was shown to be slightly
more accurate than the Cartesian approach, which used
a multi-dimensional reconstruction. The results shown
here compare the truncation error between a sequence of
hexahedral and Cartesian meshes, where the multi-
dimensional reconstruction shown in Section IIIb.1 is
used.

10°
@ —© Hexahedra
-0 Prisms: p_id=1
O---O Prisms: p_id=2 o
A-—~—A Prisms: p_id=3
<}-—<]Tetrahedra

1 0_1 V—-V Cartesian

L
10° 3 4
10° - I
10 10° 10% 10" 10°
o

Figure 5. L, -norms for central scheme.

A series of calculations were also made using the cen-
tral-difference flux scheme with added dissipation on
the exact same meshes. Figure 5 shows the computed
L. norms against the two-dimensional length scale and
Table I1 shows the asymptotic orders of accuracy.

As is indicated by the order of the L_ norms, the partic-
ular implementation of the dissipative flux constructions
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is not uniformly second-order accurate. It is surmised
that the construction of the dissipative fluxes near the
boundaries has reduced the accuracy of the scheme. The
results shown here construct the third-difference opera-
tor at the boundaries using ghost-cell information. A
comparison to a presumably less accurate formulation
which does not use ghost cell data indicated no appre-
ciable improvement.

Since the discrete errors for both the upwind and central
difference schemes are available for the same meshes,
one can also compare these two schemes. Figure 6
shows the L1 norms for the hexahedral, tetrahedral and
Cartesian meshes.

0
10 ®— @ Hexabedra: Upwind
O—=CO Hexahedra: Central
P— Tetrahedra: Upwind
>—7L> Tetrahedra: Central
» M—M Cartesian: Upwind
1 o || Cartesian: Central
1 2
L1 0
10°
10" , - -
10* 10° 10%® 10" 10°
lbp

Figure 6. Comparison of L, -norms for
the upwind and central schemes.

As is seen in the plot, there is an appreciable difference
between the truncation error of the central and upwind
schemes on the Cartesian mesh, where the central
scheme exhibits nearly ten times the error on the finer
mesh than the upwind scheme. This difference in error
is not at as severe on the tetrahedral and hexahedral
meshes, where the central scheme error is approxi-
mately four and six times more than the upwind formu-
lation, respectively.

The grid convergence study was performed on IBM
RS6000, model 590 workstations, using the xlc com-
piler with standard optimizations. The processing rates

10

for both the upwind and central schemes are shown in
Table III and Table IV for the final meshes in each
sequence. Also shown in are the rates for the same
meshes and algorithms, but on the CRAY C-90, eagle,
using the Cray standard C compiler, Version 4.0.2.7.

It is important to consider the particular way the differ-
ent schemes are compared to one another in Figure 4,
Figure 5 and Figure 6. The length scale has been con-
structed to deduce the order of the schemes. A compari-
son that would critically gauge the different approaches
upon the different mesh topologies must use some mea-
sure of computational efficiency, perhaps measured by a
memory-time integral. This efficiency will be greatly
effected by the tailoring of the solver to a particular con-
vective flux discretization (i.e. central or upwind) and
for a particular mesh topology. The intent of this conver-
gence study is only to verify the accuracy of the particu-
lar flux constructions and to validate the mixed volume
grid approach, and not to promote one mesh topology
over another.

V.b Developing Laminar Flow over a Flat
Plate

The flow developing over a flat plate which is aligned
with the free stream is computed next. A mesh of hexa-
hedra is generated with 31, 21 and 5 points in the
streamwise, plate normal, and span-wise directions,
respectively. The mesh is stretched in both the stream-
wise and normal directions. Flow conditions correspond
to a freestream Mach number of M_ = 0.25 and a
Reynolds number based on plate length of
Re = 50,000. The code is run using the upwinding
formulation and the FDS scheme. As in the previous
case, a hexahedral mesh has been constructed, and from
this mesh, other derived mesh types are found. A tetra-
hedral mesh and a prismatic mesh with the p_id= 2 are
constructed from the base mesh, and the prismatic mesh
is shown in Figure 7.

Figure 7. Prism (p_id=2) mesh derived
from hexahedral mesh.
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Figure 8 and Figure 9 show the computed u- and v-

velocity profiles plotted against the similarity coordinate

1, for the three meshes at a location on the mid-plane of

the plate, with a Reynolds number based on distance

from the leading edge of Re_ = 40, 000. Each mesh
x

produces good results.

10.0 ———

® Hexahedra
a Prisms: p_id=2
80 } » Tetrahedra
—— Theory

6.0 |
n
40t
20}
0.0 . . : . —
00 02 04 06 08 10
u/u
o0
Figure 8. u-velocity profiles at
Re = 40,000.
X
10.0 . : : -
® Hexahedra
u Prisms: p_id=2 .
» Tetrahedra
80 Theory
6.0 |
Ll
40 |
20t
0.0 i i i\ A i
00 02 04 06 08 10
v/ uoo@ m)
Figure 9. v-velocity profiles at
Rex = 40, 000

V.c Developing Laminar Flow in a
Rectangular Duct

The developing laminar flow in a five-to-one aspect
ratio duct is computed next, and compared to the experi-
mental data of Sparrow et al. [28]. The computations are
performed for a Reynolds number based on inlet mass
flow rate and hydraulic diameter of 500 for a duct length
of 31.25 inches. The 5:1 aspect ratio duct has major and
minor widths of 3.125 and 0.625 inches. The exit pres-
sure is specified according to the experimental data from
the experimentally measured pressure drop correlation

P,_-P(2)
K == 1.89+76.3(z/—D) 1)
)4 1 _2 Re

2Pv

where D is the hydraulic diameter. The inlet total condi-
tions are set so that the Mach number based on area-
averaged axial velocity is M_ = 0.1. A 15x15x21
hexahedral mesh is constructed with stretching in all
directions. A tetrahedral mesh is also constructed, as
before, from the base hexahedral mesh. These calcula-
tions use the upwinding formulation with the FDS flux
function. Figure 10 and Figure 11 compare the com-
puted centerline pressure drop and streamwise velocities
from the hexahedral and tetrahedral meshes to the
experimental data of [28]. Agreement with experiment
is considered good.

10 ; ; "
« Experiment
o———o Hexahedral Mesh
8 || ¥— Tetrahedral Mesh

0 L . : N

0 2 4 6 8 10
/D)2
(Re x10

Figure 10. Computed and experimental
axial-pressure loss.
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Figure 11. Computed and experimental

centerline, axial velocity.
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V.d Wall/Cylinder Flow: Prismatic/
Tetrahedral Mesh

The flow about a wall/cylinder combination is computed
using the mixed volume grid approach. The mesh was
generated by the prismatic/tetrahedral mesh generator
developed by Connell et al. [8], for which the solver
provides an input data type. Flow conditions correspond
to a Reynolds number based upon cylinder diameter of
Re = 50 and a freesteam Mach number of
M__ = 0.25.Figure 12 shows a perspective view of the
grid, while Figure 13 shows a slice through the mesh at
the mid-plane, showing the prismatic mesh about the
cylinder. The mesh has 9810 prisms and 19243 tetrahe-
dra. The calculation converged approximately four
orders of magnitude in 10,000 iterations, using 5011
seconds of cpu time and approximately 4.8 Mwords of
storage on the Cray C-90, eagle. Figure 14 shows a per-
spective view of speed contours of the computed solu-
tion at various planes slicing the volume mesh, showing
the boundary layer growth along the wall, the upstream
influence of the cylinder and the momentum deficit in
the wake. The predicted solution appears to be symmet-
ric.

Figure 12. Perspective view of
boundaries of prismatic/tetrahedral
mesh for wall/cylinder.

Figure 13. Upper boundary of prismatic/
tetrahedral mesh

X

Figure 14. Speed contours through
volume

12
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VI Concluding Remarks and Future Efforts

An approach which solves the compressible Euler and
Navier-Stokes equations upon control volumes of nearly
arbitrary polyhedra has been presented. The conserva-
tion laws are solved using a cell-centered, finite-volume
formulation where the control volumes are created from
an arbitrary number of triangular and quadrilateral
faces. This flexibility allows the unified treatment of
structured, unstructured, prismatic, and Cartesian-cell
based grids with a single flow solver. The basics behind
the organization and interrogation of the data structures
has been explained.

The mixed volume grid approach uses both cell-aver-
aged and vertex data. The convective terms of the gov-
eming equations have been treated with both an upwind
and central differencing approach. The reconstruction
method used for the upwind flux discretization uses an
application of the divergence theorem upon the actual
control volume itself. The viscous fluxes have been con-
structed using a directed gradients procedure.

An analytical solution to the Euler equations, a super-
sonic vortex, has been used to assess the accuracy of the
approach, and has been used to compare results amongst
the different grid types and between the upwind and
central difference approximations. A refinement
sequence of four hexahedral meshes was used to gener-
ate 3 families of prismatic meshes and a sequence of tet-
rahedral meshes by subdividing each hexahedra into the
respective volume type. In addition, a Cartesian gener-
ated mesh was used and compared to the others. Here,
the bulk of the Cartesian generated volume is comprised
of axes-aligned hexahedra with arbitrary polyhedra
along the boundaries created from the geometric inter-
section of the boundaries and the Cartesian cells. The
grid refinement study showed that the hexabedral based
mesh had the lowest error, while the tetrahedral mesh
had the highest. In addition, the global error norms indi-
cated that for the same mesh the upwind formulation
was more accurate than the central difference approach.
The Cartesian grids were shown to give an error compa-
rable to the hexahedral meshes. The upwind formulation
was shown to be globally second-order accurate upon
all the meshes, and locally second-order accurate on
some of the element types. The central scheme was
shown to be globally, marginally second-order accurate,
and first-order accurate locally. This reduction in the
order for the central scheme was surmised to be caused
by the construction of the boundary dissipative fluxes.

Laminar calculations have been made for the develop-
ing flow over a flat plate for hexahedral, prismatic, and
tetrahedral meshes and for the developing flow in a 5:1
aspect ratio duct. Favorable comparisons to theory and
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experiment were shown for these cases. To demonstrate
a prismatic mesh type calculation, a prismatic/tetrahe-
dral mesh, supplied by Connell et al. [8], was used to
compute the flow about a cylinder/wall configuration.
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Appendix A: Mesh Convergence Study:
Asymptotic Slopes

TABLE I Asymptotic Slopes of Error Norms:
Upwind Formulation

L, L

Grid Type Norm Norm
Hexahedral 2.08 1.94
Tetrahedral 1.77 0.93
Prismatic: plane_id=1 1.68 0.88
Prismatic: plane_id=2 2.05 1.63
Prismatic: plane_id=3 2.02 1.78
Cartesian: Az = 1/4 2.03 1.73

TABLE II Asymptotic Slopes of Error Norms:
Central Differencing Formulation

L, L

Grid Type Norm Norm
Hexahedral 1.82 1.18
Tetrahedral 1.17 0.78
Prismatic: plane_id=1 1.85 0.78
Prismatic: plane_id=2 1.33 1.02
Prismatic: plane_id=3 1.82 1.02
Cartesian: Az = 1/4 1.96 1.06
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A

endix B: Processing Rat n Final

Meshes used in Convergence Study

TABLE III Cell processing rates (seconds/
iteration/cell) on final meshes, upwind scheme

RS6000 | CRAY

Model | C-90,

Grid Type 590 eagle
Hexahedral 3.41le4 | 2.51e-5
Tetrahedral 227e-4 | 1.50e-5
Prismatic: plane_id=1 2.88e-4 | 2.04e-5
Prismatic: plane_id=2 2.89e-4 | 2.02e-5
Prismatic: plane_id=3 2794 | 2.05e-5
Cartesian: ‘Az = 1/4 3.47e-4 | 2.20e-5

TABLE IV Cell processing rates (seconds/
iteration/cell) on final meshes, central scheme

RS6000 | CRAY

Model | C-90,

Grid Type 590 eagle
Hexahedral 1.84e-4 | 1.94e-5
Tetrahedral 1.26e-4 | 1.14e-5
Prismatic: plane_id=1 1.55e-4 | 1.57e-5
Prismatic: plane_id=2 1.53e-4 | 1.54e-5
Prismatic: plane_id=3 1.50e-4 | 1.55e-5
Cartesian: Az = 1/4 1.82e-4 | 1.60e-5
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